How to AI (Almost) Anything Lecture 9 – Large Multimodal Models

Paul Liang Assistant Professor MIT Media Lab & MIT EECS

https://pliang279.github.io ppliang@mit.edu @pliang279

Assignments for This Coming Week

For project:

- Make sure to meet with myself and TAs this week
- Medium progress towards implementing new ideas. Either promising results or poor results, but a good idea of what is wrong and how to fix.

Reading assignment due tomorrow Wednesday (4/16).

This Thursday (4/17): fifth reading discussion on large language models.

- 1. Alignment faking in LLMs
- 2. Mathematical reasoning in LLMs

2

Today's lecture

Multimodal foundation models and pre-training

Adapting LLMs into multimodal LLMs

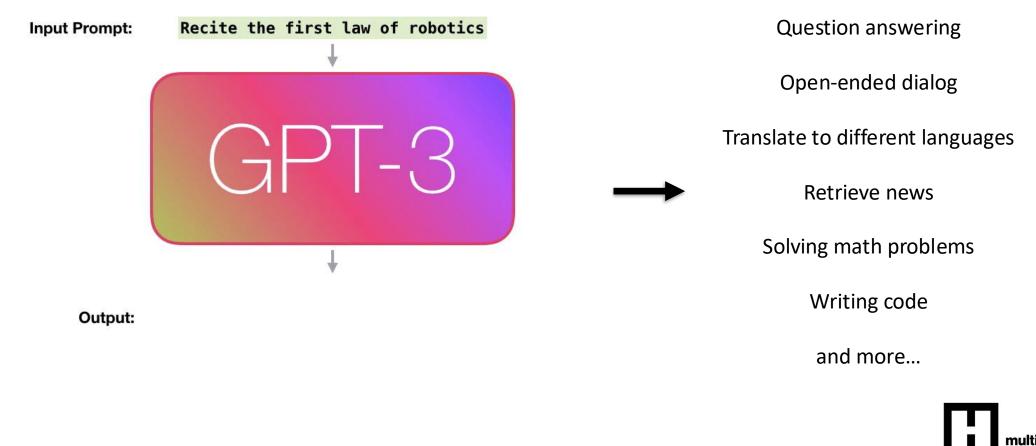
2

1

From text to multimodal generation

Latest directions

Recap: Large Language Models



[Brown et al., Language Models are Few-shot Learners. NeurIPS 2020]

From Large Language Models to Multimodal Models

Classification: What is the tone of the man in the grey shirt?

Open-ended: Describe the relationships between these 2 people.

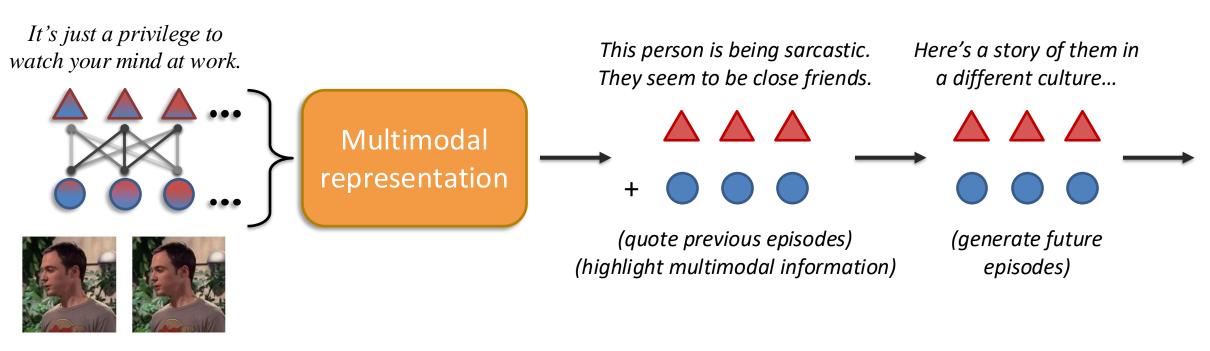
Explanation: Explain why, citing visual and verbal evidence.

Generation: Animate a story inspired by this short video clip.

Counterfactual: What if these people were from a different society or culture?

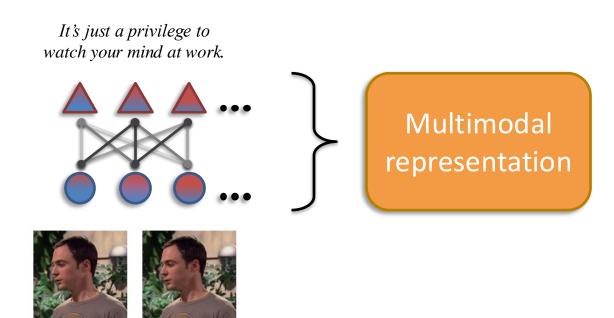
[Liang, Zadeh, and Morency. Foundations and Trends on Multimodal Machine Learning. ACM Computing Surveys 2024]

From Large Language Models to Multimodal Models



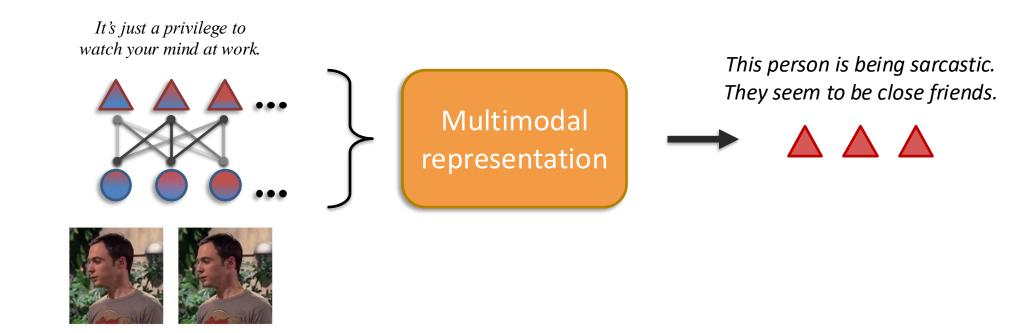
Lecture outline

Part 1: Multimodal foundation model representations of text, video, audio



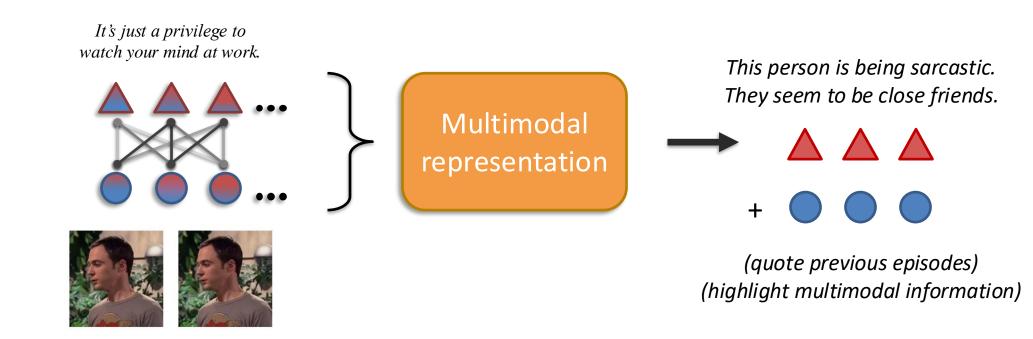
Lecture outline

Part 2: Adapting large language models for multimodal text generation



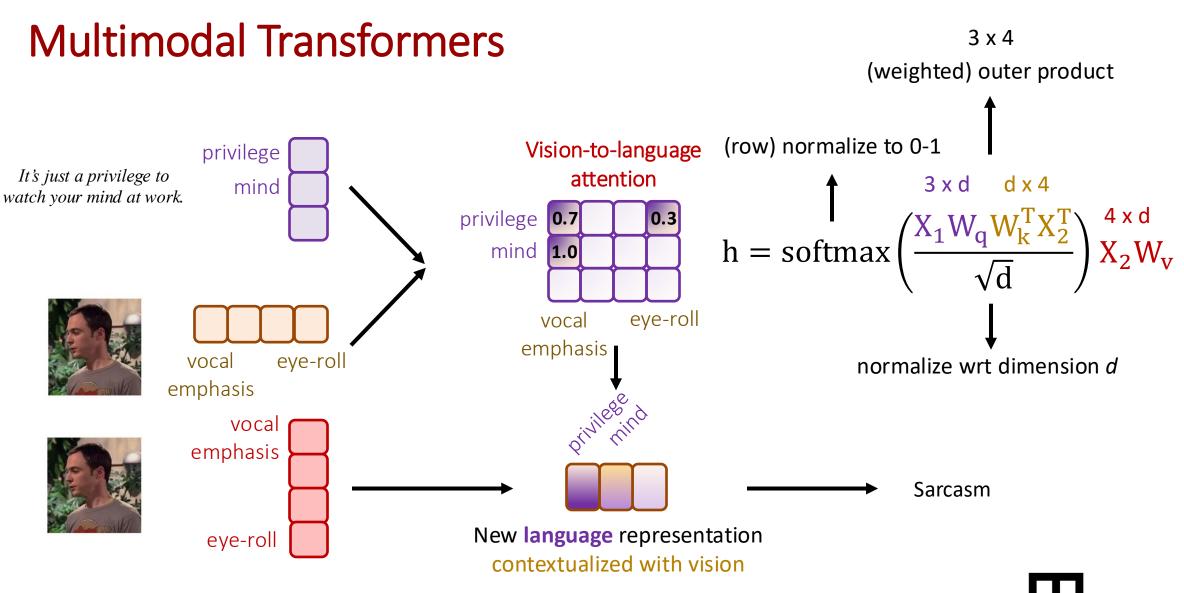
Lecture outline

Part 3: Enabling text and image generation



Vision Transformers

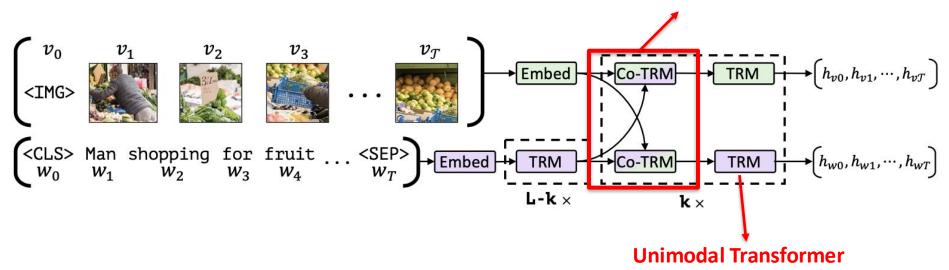
[original slide co-developed with Louis-Philippe Morency for CMU course 11-777] [Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2020]



nultisensorv

[Liang et al., Multimodal Language Analysis with Recurrent Multistage Fusion. EMNLP 2018] [Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences. ACL 2019]

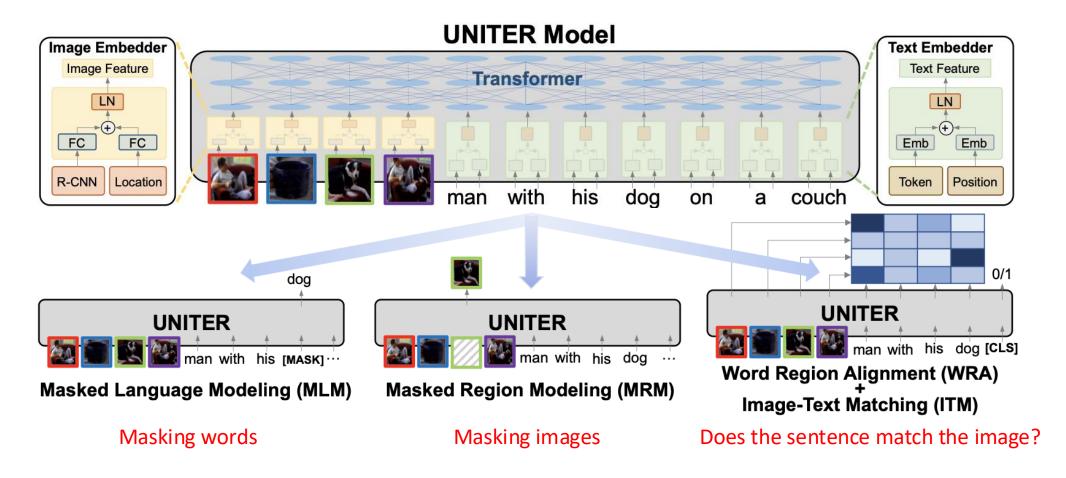
Multimodal Cross-attention Transformers



Cross-Modal Transformer Modules

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777] [Lu et al., Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. NeurIPS 2019]

Multimodal Cross-attention Transformers



[Chen et al., Uniter: Universal Image-Text Representation Learning. ECCV 2020] [Kim et al., VILT: Vision-and-Language Transformer Without Convolution or Region Supervision. ICML 2021]

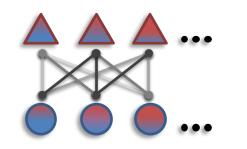
Visual-and-Language Transformer (ViLT)

Example of alignment between modalities:

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777] [Kim et al., ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. ICML 2021]

Adapting Large Language Models to Multimodal

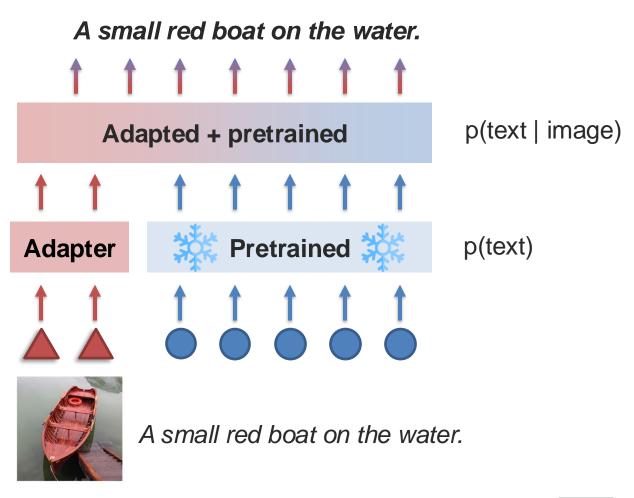
It's just a privilege to watch your mind at work.



This person is being sarcastic. They seem to be close friends.

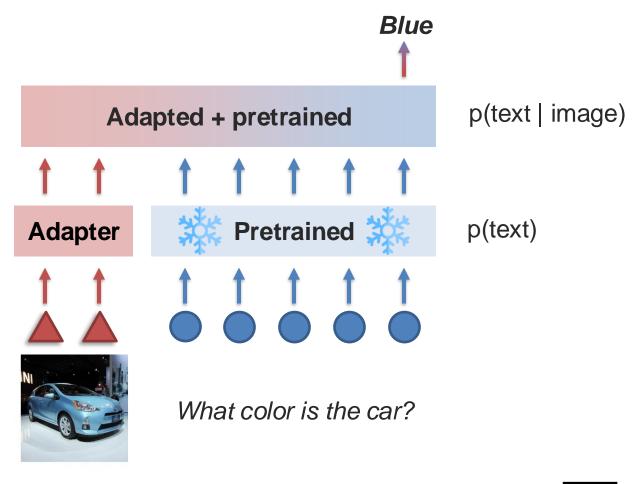
Conditioning via prefix tuning

Modeling p(text | image):



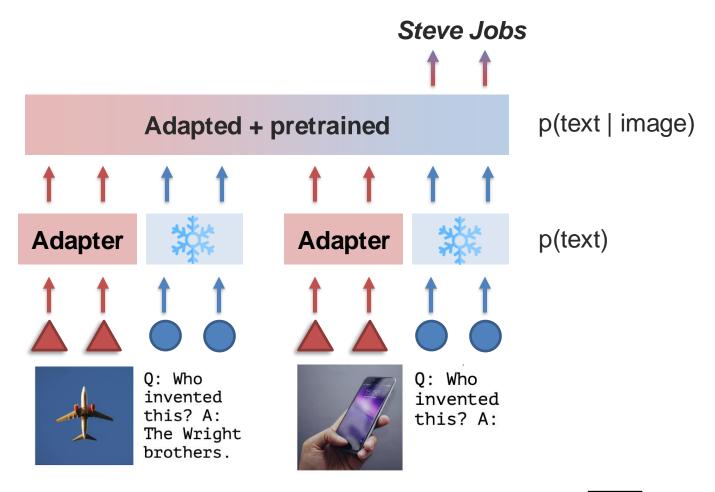
Conditioning via prefix tuning

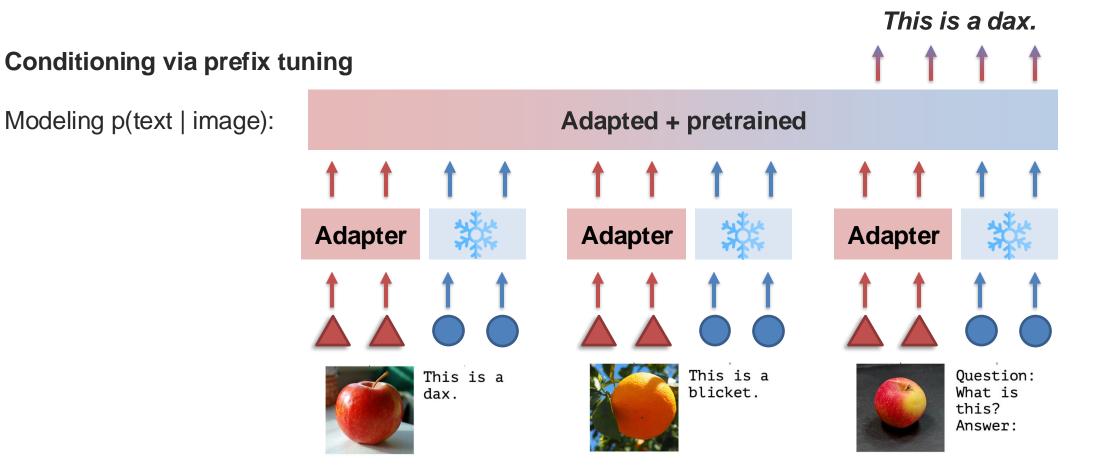
Modeling p(text | image):



Conditioning via prefix tuning

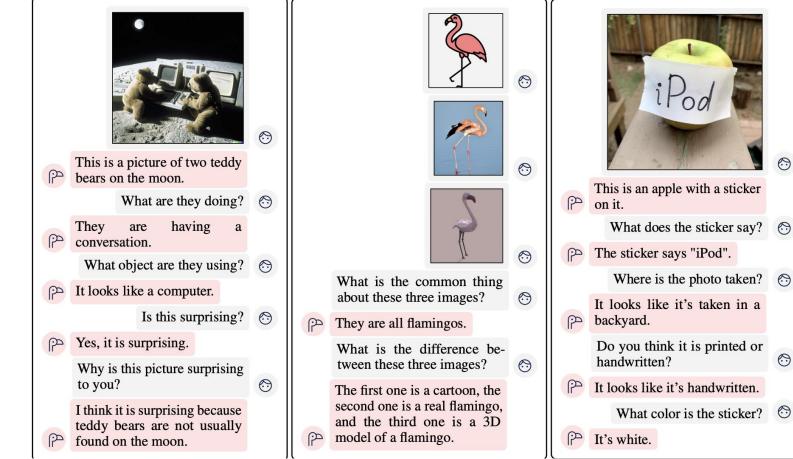
Modeling p(text | image):





multisensory intelligence

Flamingo



 \odot

 \bigcirc

 \bigcirc

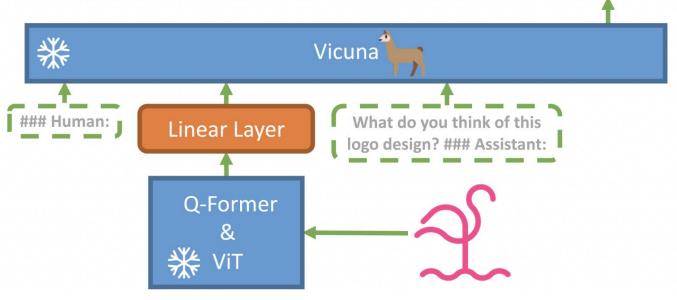
0

Scaling Large Multimodal Models

Mini-GPT4

Stage 1: **Alignment** using paired image-text data.

Stage 2: **Instruction tuning** using image + text instructions and example completions. The logo design is simple and minimalistic, with a pink line drawing of a flamingo standing on one leg in the water. The design is clean and easy to recognize, making it suitable for use in various contexts such as a logo for a beach resort or a flamingo-themed event. The use of a flamingo as a symbol adds a touch of whimsy and fun to the design, making it memorable and eye-catching. Overall, it's a well-designed logo that effectively communicates the brand's message.



The architecture of MiniGPT-4.

[Zhu et al., MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models. 2023]

Scaling Large Multimodal Models

LLaMA-Adapter

multisensory intelligence

[Zhang et al., LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention. ICLR 2024]

Pre-training datasets

- Largest dataset is DataComp. It has 12.8 billion image-text pairs.
- Recent efforts shifted more towards filtering for high quality multimodal data. Examples include DFN (2B), COYO (600M), and Obelics (141M)

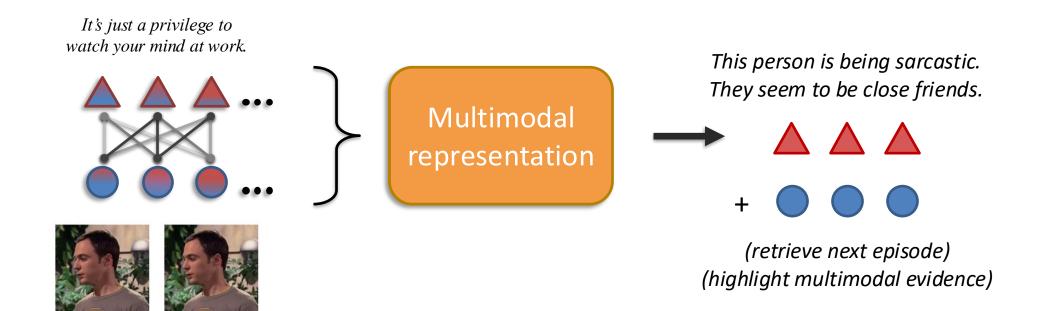
YFCC-100M	LAION-400M	LAION-5B	Datacomp-1	2B
2018	2021	2022	2023	
Data type	dataset		#samples	sampling prob.
	DFN [Fang et al., 2	023]	2B	27%
Image-Caption	COYO [Byeon et al.,	2022]	600M	11.25%
	HQITP		400M	6.75%
Interleaved	Obelics [Laurençon et a	ıl., 2024a]	141M Docs	45%
Text	DCLM [Li et al., 20	24b]	6.6T Toks	10%

Multimodal Instruction Tuning Datasets

- More scattered, smaller in nature
- General domain: Vision-Flan (187K), LLaVA-Instruct (150K), InstructBLIP (~1.6M), M3IT (2.4M)
- Clinical: CLIMB-QA (4.51M), BioMed-VITAL (210K), LlaVA-Med (60K)

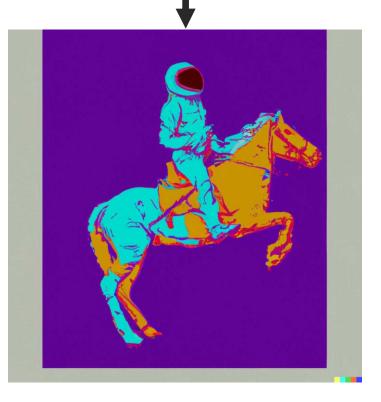
Dataset	# Tasks	Multi-Lingual	# of Instances	Avg. # of Manual Instructions / Task	Open-Sourced
MiniGPT4	N/A	×	5K	N / A	1
LLaVA	3	×	1.15M	N / A	1
MultiModalGPT	3	×	6K	5	×
MultiInstruct	26	×	$\sim 235 \mathrm{K}$	5	×
InstructBLIP	28	×	$\sim 1.6 { m M}$	9.7	×
M ³ IT (Ours)	40	1	2.4M	10	<i>✓</i>

From Text to Multimodal Generation

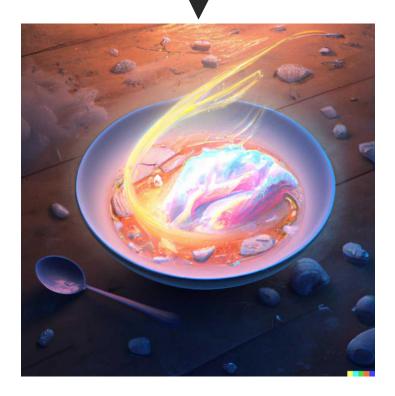


From Text to Multimodal Generation

An astronaut riding a horse in the style of Andy Warhol.



A bowl of soup that is a portal to another dimension as digital art

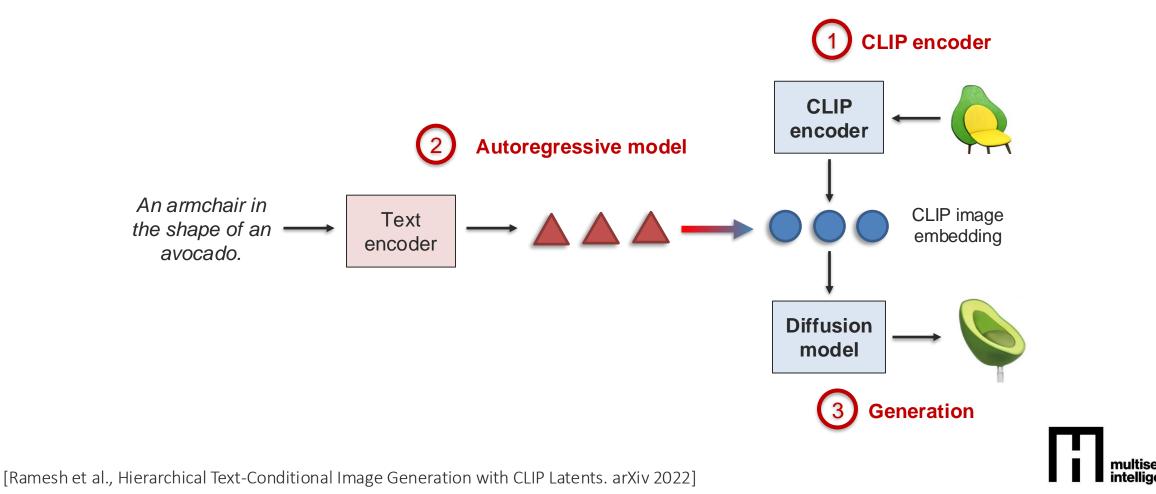


[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]

From Text to Multimodal Generation

Directly training diffusion models with conditional information

Conditional latent variables are pretrained CLIP embeddings, then diffusion model to generate image.

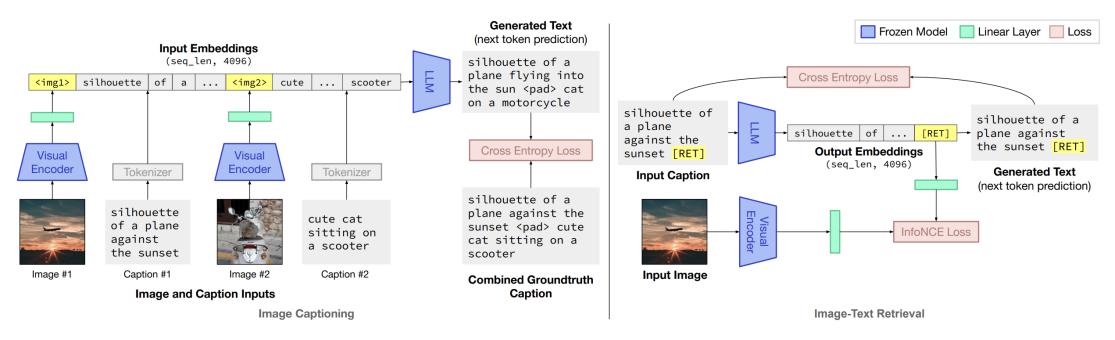


Grounding LMs for Image Retrieval

LIMBeR + CLIP. Trainable in 1 day on 1 GPU

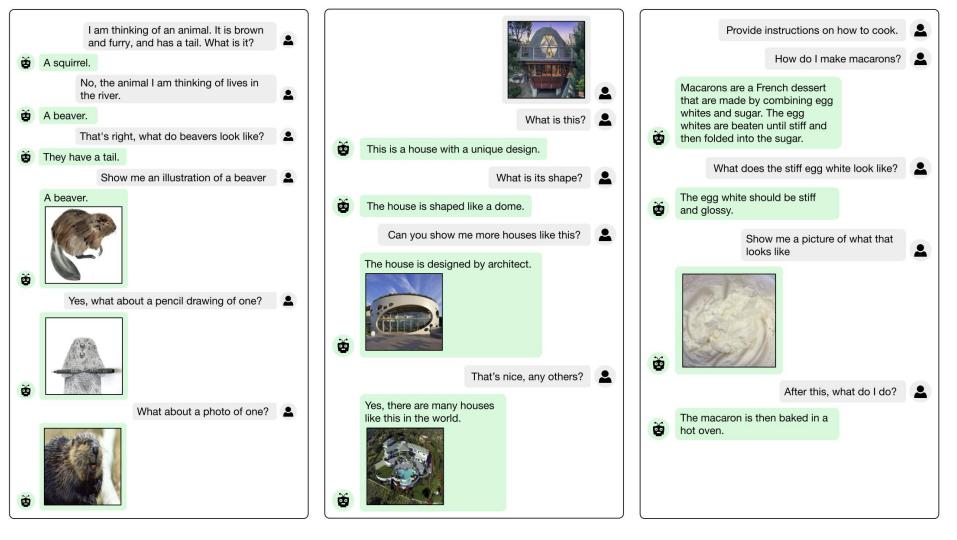
Interleaved images and text

CLIP, with a frozen LLM



[Koh et al., Grounding Language Models to Images for Multimodal Inputs and Outputs. ICML 2023]

Grounding LMs for Image Retrieval



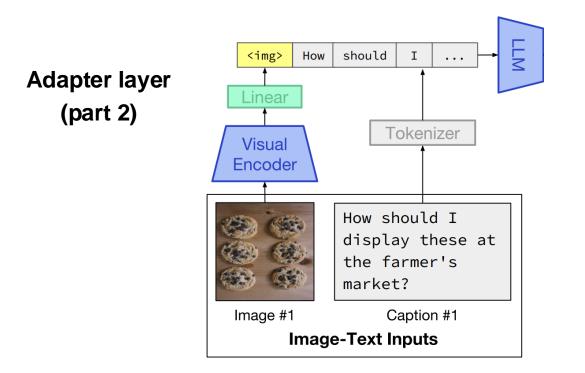
multisensorv

intelligence

[Koh et al., Grounding Language Models to Images for Multimodal Inputs and Outputs. ICML 2023]

Grounding LMs for Multimodal Generation

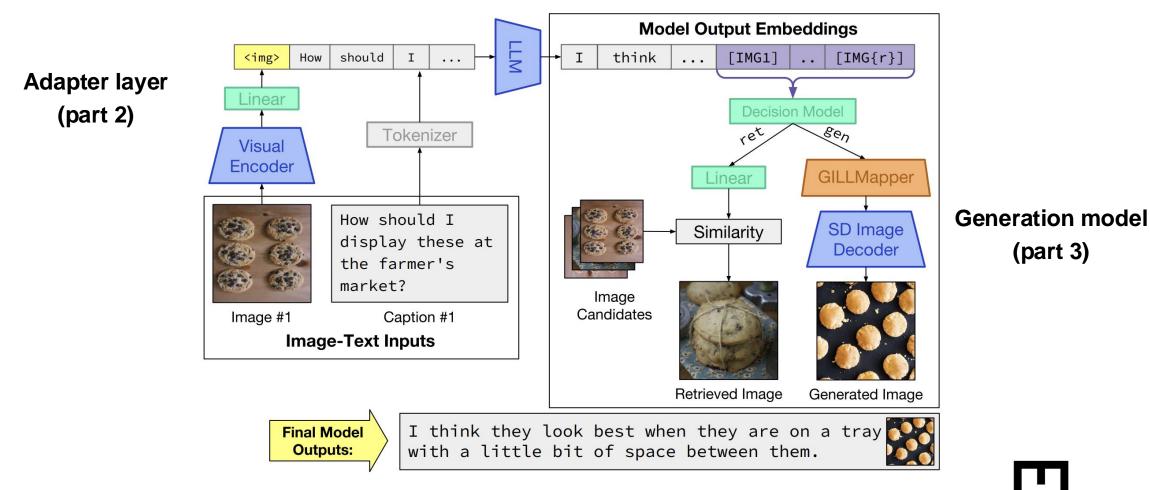
Large multimodal models with image generation



[Koh et al., Generating Images with Multimodal Language Models. NeurIPS 2023]

Grounding LMs for Multimodal Generation

Large multimodal models with image generation



multisensorv

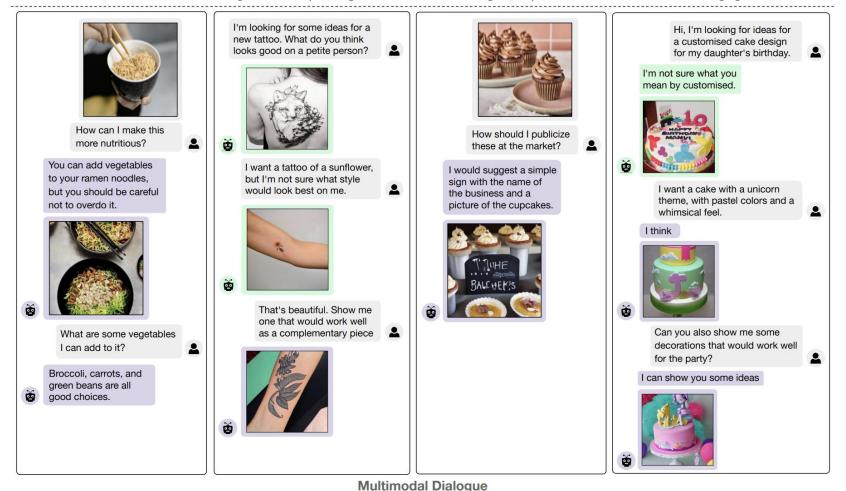
intelligence

[Koh et al., Generating Images with Multimodal Language Models. NeurIPS 2023]

Grounding LMs for Multimodal Generation

Visual Storytelling

Our model can condition on interleaved image-and-text inputs to generate more relevant images compared to non-LLM based text-to-image generation models.



Our model can generate multimodal dialogue, weaving together text, retrieved images, and generated images.

User prompts

Retrieved Generated

multisensorv

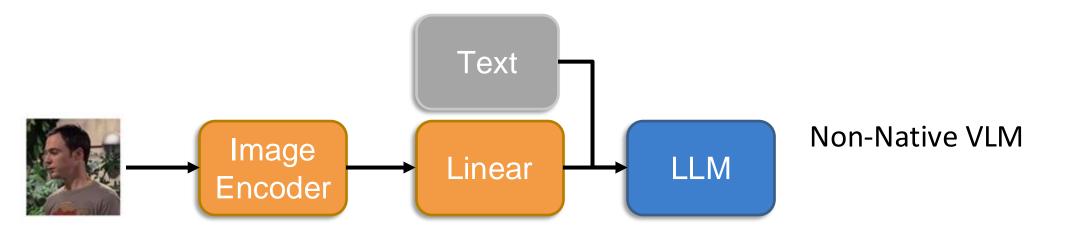
intelligence

- *Native Multimodal Modals*: LLMs Trained from scratch with multimodal input (instead of finetuning a trained unimodal LLM)
- Largest public model now: 109B 2T parameters

288B active parameter, 16 experts 2T total parameters		
The most intelligent teacher model for distillation	Llama 4 Maverick	
Preview	17B active parameters, 128 experts 400B total parameters	
	Native multimodal with 1M context length	Llama 4 Scout
	Available	17B active parameters, 16 experts 109B total parameters
		Industry leading 10M context length Optimized inference

[The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation, <u>https://ai.meta.com/blog/llama-4-multimodal-intelligence/]</u>

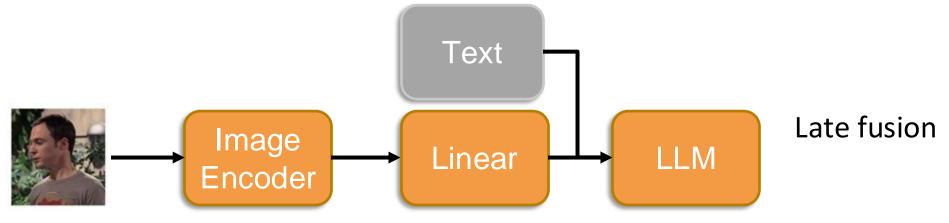
- Background
 - **Non-native VLMs**: Image encoder paired with frozen trained LLM. The image encoder can either be frozen or trained. Most VLMs now use this structure.



Most current VLMs use this architecture.

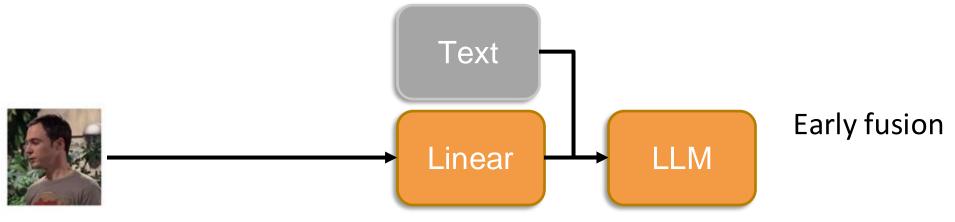
[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, <u>https://arxiv.org/abs/2504.07951</u>]

- Background
 - Non-native VLMs: Image encoder paired with frozen trained LLM. The image encoder can either be frozen or trained. Most VLMs now use this structure.
 - Native Multimodal Modals: LLMs Trained from scratch with multimodal input
 - Late fusion: Image patches -> Image Encoder -> Linear -> LLM.
 - Early fusion: Image patches -> Linear -> LLM (No image encoder!)



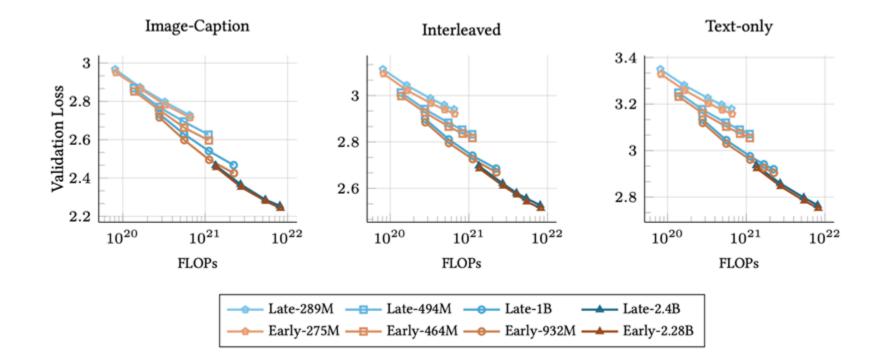
[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, https://arxiv.org/abs/2504.07951]

- Background
 - Non-native VLMs: Image encoder paired with frozen trained LLM. The image encoder can either be frozen or trained. Most VLMs now use this structure.
 - Native Multimodal Modals: LLMs Trained from scratch with multimodal input
 - Late fusion: Image patches -> Image Encoder -> Linear -> LLM.
 - Early fusion: Image patches -> Linear -> LLM (No image encoder!)



Scaling Laws for Native Multimodal Models

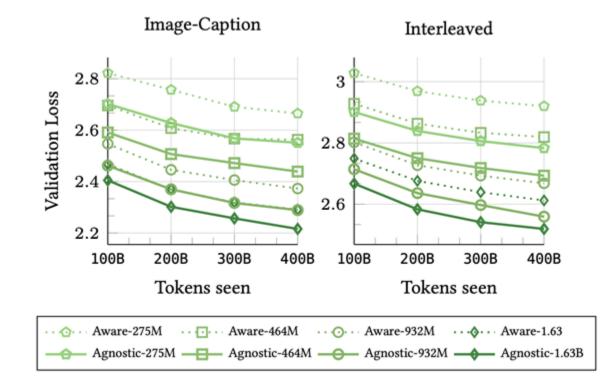
- Early fusion models hold small advantage on small scales.
- On larger scales, **both architectures perform similarly.** (We don't actually need image encoders!)
- **NMMs scale similarly to unimodal LLMs**, with slightly varying scaling exponents depending on the target data type and training mixture



[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, <u>https://arxiv.org/abs/2504.07951</u>]

Scaling Laws for Native Multimodal Models

- Sparse structure like MOE significantly benefits NMMs at the same inference cost
- In an MOE structure, Modality-aware design (having separate image/text experts) performs **worse** than modality-agnostic design (unified experts for both image/text tokens)

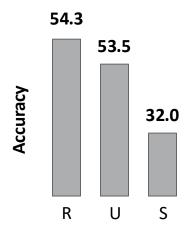


[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, <u>https://arxiv.org/abs/2504.07951</u>

One model for everything?

Video sarcasm detection

BLIP-2 pretrained model



Y: Sarcasm

 X_ℓ : Spoken language

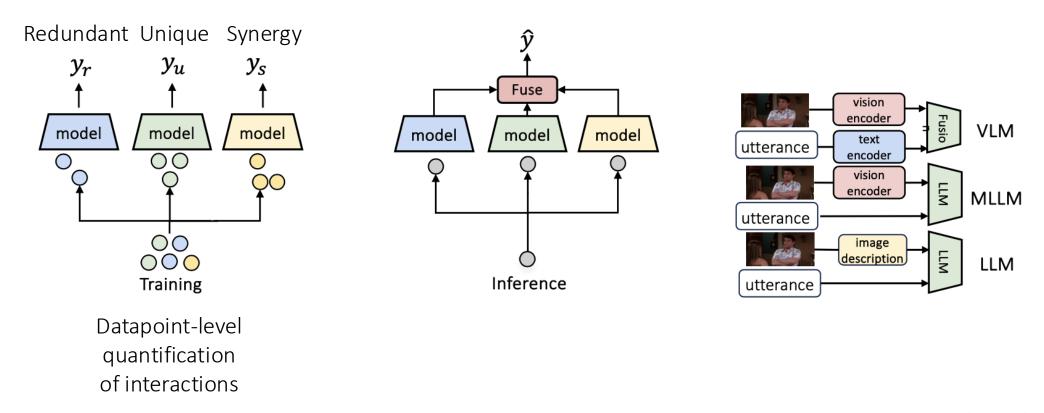
It's just a privilege to watch your mind at work.

 X_{av} : Audio + visual

Neutral tone + straight face

Mixture of Multimodal Interaction Experts

One model for everything -> specialized models for each interaction



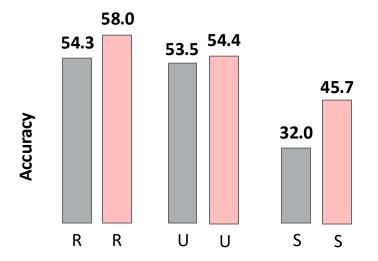
[Yu et al., MMOE: Enhancing Multimodal Language Models with Mixture of Multimodal Interaction Experts. EMNLP 2024]

Mixture of Multimodal Interaction Experts

One model for everything -> specialized models for each interaction

Video sarcasm detection

BLIP-2 + Mixture of Experts



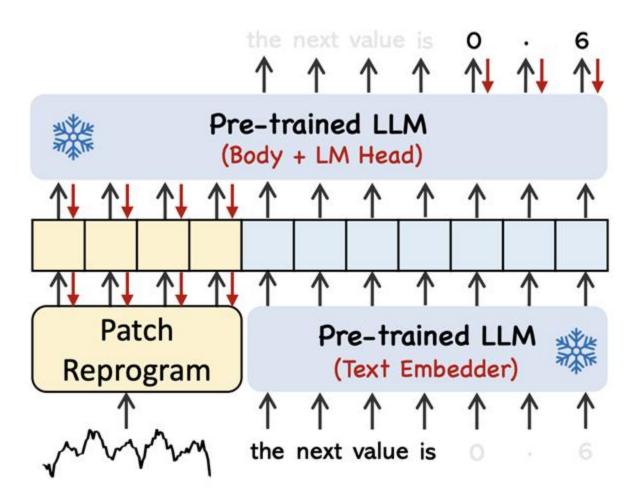
The car is as fast as a cheetah.

[Yosef et al., EMNLP 23]

[Yu et al., MMOE: Enhancing Multimodal Language Models with Mixture of Multimodal Interaction Experts. EMNLP 2024]

Time-series Multimodal Models

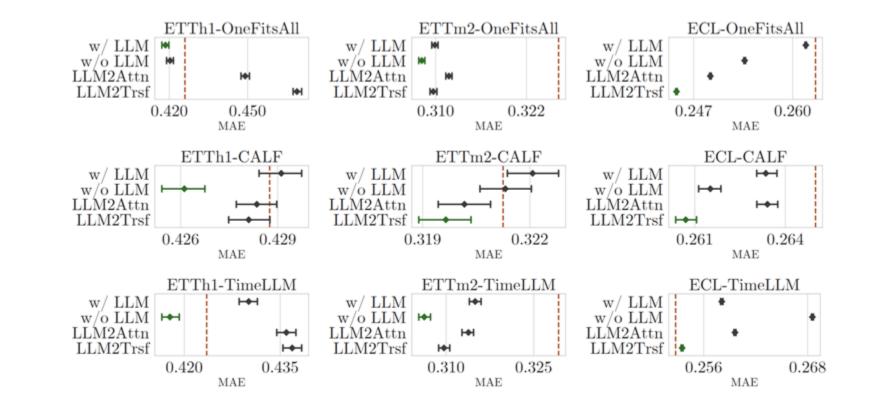
- Typically trained & aligned the same way as vision language models (alignment + instruction tuning)
- Works for both analysis and prediction
- Example: Time-LLM, OneFitsAll



[Time-LLM: Time Series Forecasting by Reprogramming Large Language Models, <u>https://arxiv.org/abs/2310.01728</u>]

Time-series Multimodal Models

But some current time series LLMs have questionable performance. Replacing LLM with a simple attention layer doesn't significantly degrade performance (sometimes even better).



* Lower is better

[Are Language Models Actually Useful for Time Series Forecasting? <u>https://arxiv.org/abs/2406.16964</u>]

Today's lecture

Multimodal foundation models and pre-training

Adapting LLMs into multimodal LLMs

2

From text to multimodal generation

Latest directions: natively multimodal, multimodal MoE, real-world modalities

Assignments for This Coming Week

For project:

- Make sure to meet with myself and TAs this week
- Medium progress towards implementing new ideas. Either promising results or poor results, but a good idea of what is wrong and how to fix.

Reading assignment due tomorrow Wednesday (4/16).

This Thursday (4/17): fifth reading discussion on large language models.1. Alignment faking in LLMs

2. Reasoning in LLMs

