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Assignments for This Coming Week

For project:
• Make sure to meet with myself and TAs this week

• Medium progress towards implementing new ideas. Either promising results or poor results, 
but a good idea of what is wrong and how to fix.

Reading assignment due tomorrow Wednesday (4/16).

This Thursday (4/17): fifth reading discussion on large language models.

1. Alignment faking in LLMs

2. Mathematical reasoning in LLMs
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Today’s lecture

Multimodal foundation models and pre-training1

2 Adapting LLMs into multimodal LLMs

3 From text to multimodal generation

4 Latest directions

3



Recap: Large Language Models
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Question answering

Open-ended dialog

Translate to different languages

Retrieve news

Solving math problems

Writing code

and more…

[Brown et al., Language Models are Few-shot Learners. NeurIPS 2020]



From Large Language Models to Multimodal Models
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Classification: What is the tone of the 
man in the grey shirt?

Open-ended: Describe the relationships 
between these 2 people.

Explanation: Explain why, citing visual and 
verbal evidence.

Generation: Animate a story inspired by 
this short video clip.

Counterfactual: What if these people 
were from a different society or culture?

[Liang, Zadeh, and Morency. Foundations and Trends on Multimodal Machine Learning. ACM Computing Surveys 2024]



From Large Language Models to Multimodal Models
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It’s just a privilege to 

watch your mind at work.

Multimodal 
representation

This person is being sarcastic.
They seem to be close friends.

(quote previous episodes)
(highlight multimodal information)

+

Here’s a story of them in 
a different culture…

(generate future 
episodes)



Lecture outline
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It’s just a privilege to 

watch your mind at work.

Multimodal 
representation

Part 1: Multimodal foundation model representations of text, video, audio



Lecture outline
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It’s just a privilege to 

watch your mind at work.

Multimodal 
representation

This person is being sarcastic.
They seem to be close friends.

Part 2: Adapting large language models for multimodal text generation



Lecture outline
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It’s just a privilege to 

watch your mind at work.

Multimodal 
representation

Part 3: Enabling text and image generation 

This person is being sarcastic.
They seem to be close friends.

(quote previous episodes)
(highlight multimodal information)

+



Vision Transformers
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[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]
[Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2020]



Multimodal Transformers
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New language representation 
contextualized with vision

Vision-to-language 
attention

vocal
emphasis

privilege

eye-roll

mind

vocal
emphasis

eye-roll

0.7 0.3

1.0

Sarcasm

It’s just a privilege to 

watch your mind at work.

[Liang et al., Multimodal Language Analysis with Recurrent Multistage Fusion. EMNLP 2018]
[Tsai et al., Multimodal Transformer for Unaligned Multimodal Language Sequences. ACL 2019]

h = softmax
X1WqWk

TX2
T

d

(row) normalize to 0-1

normalize wrt dimension d

3 x d d x 4

(weighted) outer product

3 x 4

X2Wv

4 x d

privilege

mind

vocal
emphasis

eye-roll



Multimodal Cross-attention Transformers
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Cross-Modal Transformer Modules

Unimodal Transformer

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]
[Lu et al., Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. NeurIPS 2019]



Multimodal Cross-attention Transformers
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Masking words Masking images Does the sentence match the image?

[Chen et al., Uniter: Universal Image-Text Representation Learning. ECCV 2020]

[Kim et al., ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. ICML 2021]



Visual-and-Language Transformer (ViLT)
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Example of alignment between modalities:

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

[Kim et al., ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. ICML 2021]



Adapting Large Language Models to Multimodal
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It’s just a privilege to 

watch your mind at work.

Multimodal 
representation

This person is being sarcastic.
They seem to be close friends.



Adapting Large Language Models
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A small red boat on the water.

Adapted + pretrained

Adapter Pretrained

A small red boat on the water.

p(text)

p(text | image)

Conditioning via prefix tuning

Modeling p(text | image):

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]



Adapting Large Language Models
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Conditioning via prefix tuning

Modeling p(text | image):

What color is the car?

Pretrained

Adapted + pretrained

Adapter

Blue

p(text)

p(text | image)

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]



Adapting Large Language Models
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Conditioning via prefix tuning

Modeling p(text | image): Adapted + pretrained

Adapter Adapter

Steve Jobs

p(text)

p(text | image)

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]



Adapting Large Language Models
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Conditioning via prefix tuning

Modeling p(text | image): Adapted + pretrained

Adapter Adapter Adapter

This is a dax.

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]



Adapting Large Language Models
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Flamingo

[Alayrac et al. Flamingo: a Visual Language Model for Few-Shot Learning. NeurIPS 2022]



Scaling Large Multimodal Models
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Mini-GPT4

Stage 1: Alignment using 
paired image-text data.

Stage 2: Instruction tuning 

using image + text instructions 
and example completions.

[Zhu et al., MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models. 2023]



Scaling Large Multimodal Models
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LLaMA-Adapter

[Zhang et al., LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention. ICLR 2024]



Pre-training datasets
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- Largest dataset is DataComp. It has 12.8 billion image-text pairs. 
- Recent efforts shifted more towards filtering for high quality multimodal data. 

Examples include DFN (2B), COYO (600M), and Obelics (141M)

YFCC-100M

2018

LAION-400M

2021

LAION-5B

2022

Datacomp-12B

2023



Multimodal Instruction Tuning Datasets
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- More scattered, smaller in nature
- General domain: Vision-Flan (187K), LLaVA-Instruct (150K), InstructBLIP (~1.6M), 

M3IT (2.4M)
- Clinical: CLIMB-QA (4.51M), BioMed-VITAL (210K), LlaVA-Med (60K)



From Text to Multimodal Generation

25

It’s just a privilege to 

watch your mind at work.

Multimodal 
representation

This person is being sarcastic.
They seem to be close friends.

(retrieve next episode)
(highlight multimodal evidence)

+



From Text to Multimodal Generation
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An astronaut riding a horse in the style 

of Andy Warhol.

A bowl of soup that is a portal to another 

dimension as digital art

[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]



From Text to Multimodal Generation
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[Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022]

An armchair in 

the shape of an 

avocado.

Text

encoder

CLIP

encoder

Diffusion 

model

Autoregressive model2

CLIP encoder1

3 Generation

CLIP image
embedding

Directly training diffusion models with conditional information
Conditional latent variables are pretrained CLIP embeddings, then diffusion model to generate image.



Grounding LMs for Image Retrieval
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LIMBeR + CLIP. Trainable in 1 day on 1 GPU

Interleaved images and text CLIP, with a frozen LLM

[Koh et al., Grounding Language Models to Images for Multimodal Inputs and Outputs. ICML 2023]



Grounding LMs for Image Retrieval
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[Koh et al., Grounding Language Models to Images for Multimodal Inputs and Outputs. ICML 2023]



Grounding LMs for Multimodal Generation
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Adapter layer

(part 2)

Large multimodal models with image generation

[Koh et al., Generating Images with Multimodal Language Models. NeurIPS 2023]



Grounding LMs for Multimodal Generation
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Large multimodal models with image generation

Adapter layer

(part 2)

Generation model

(part 3)

[Koh et al., Generating Images with Multimodal Language Models. NeurIPS 2023]



Grounding LMs for Multimodal Generation
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Native Multimodal Models
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- Native Multimodal Modals: LLMs Trained from scratch with multimodal input (instead of finetuning a 
trained unimodal LLM)

- Largest public model now: 109B - 2T parameters

[The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation, https://ai.meta.com/blog/llama-4-multimodal-intelligence/]

https://ai.meta.com/blog/llama-4-multimodal-intelligence/


Native Multimodal Models
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- Background
- Non-native VLMs: Image encoder paired with frozen trained LLM. The image encoder can either 

be frozen or trained. Most VLMs now use this structure.

Image 

Encoder
Linear LLM

Non-Native VLM

Text

Most current VLMs use this architecture.  

[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, https://arxiv.org/abs/2504.07951]

https://arxiv.org/abs/2504.07951


Native Multimodal Models
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Image 

Encoder
Linear LLM

Late fusion

Text

- Background
- Non-native VLMs: Image encoder paired with frozen trained LLM. The image encoder can either be 

frozen or trained. Most VLMs now use this structure. 
- Native Multimodal Modals: LLMs Trained from scratch with multimodal input

- Late fusion: Image patches -> Image Encoder -> Linear -> LLM. 

- Early fusion: Image patches -> Linear -> LLM (No image encoder!)

[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, https://arxiv.org/abs/2504.07951]

https://arxiv.org/abs/2504.07951


Native Multimodal Models
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Linear LLM
Early fusion

Text

- Background
- Non-native VLMs: Image encoder paired with frozen trained LLM. The image encoder can either be 

frozen or trained. Most VLMs now use this structure. 
- Native Multimodal Modals: LLMs Trained from scratch with multimodal input

- Late fusion: Image patches -> Image Encoder -> Linear -> LLM.

- Early fusion: Image patches -> Linear -> LLM (No image encoder!)

[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, https://arxiv.org/abs/2504.07951]

https://arxiv.org/abs/2504.07951


Scaling Laws for Native Multimodal Models
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- Early fusion models hold small advantage on small scales.
- On larger scales, both architectures perform similarly. (We don’t actually need image encoders!)
- NMMs scale similarly to unimodal LLMs, with slightly varying scaling exponents depending on the 

target data type and training mixture

[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, https://arxiv.org/abs/2504.07951]

https://arxiv.org/abs/2504.07951


Scaling Laws for Native Multimodal Models
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- Sparse structure like MOE significantly benefits NMMs at the same inference cost
- In an MOE structure, Modality-aware design (having separate image/text experts) performs worse 

than modality-agnostic design (unified experts for both image/text tokens)

[Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models, https://arxiv.org/abs/2504.07951

https://arxiv.org/abs/2504.07951


One model for everything?

[Yu et al., MMOE: Enhancing Multimodal Language Models with Mixture of Multimodal Interaction Experts. EMNLP 2024]

Video sarcasm detection

54.3

A
cc

u
ra

cy

R

32.0

U S

53.5

BLIP-2 pretrained 
model

𝑌: Sarcasm

𝑋ℓ: Spoken 
language

𝑋𝑎𝑣: Audio 
+ visual

It’s just a privilege to 

watch your mind at work.

Neutral tone + straight face
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Mixture of Multimodal Interaction Experts
One model for everything -> specialized models for each interaction

[Yu et al., MMOE: Enhancing Multimodal Language Models with Mixture of Multimodal Interaction Experts. EMNLP 2024]

Unique SynergyRedundant

Datapoint-level 
quantification
of interactions

40



Mixture of Multimodal Interaction Experts
One model for everything -> specialized models for each interaction

[Yu et al., MMOE: Enhancing Multimodal Language Models with Mixture of Multimodal Interaction Experts. EMNLP 2024]

58.0

R

45.7

U S

54.4

[Hessel et al., ACL 23]

The car is as fast

as a cheetah.

[Yosef et al., EMNLP 23]

Video sarcasm detection

54.3

A
cc

u
ra

cy

R

32.0

U S

53.5

BLIP-2 + Mixture 
of Experts
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Time-series Multimodal Models
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- Typically trained & aligned the same way 
as vision language models (alignment + 
instruction tuning)

- Works for both analysis and prediction

- Example: Time-LLM, OneFitsAll

[Time-LLM: Time Series Forecasting by Reprogramming Large Language Models, https://arxiv.org/abs/2310.01728]

https://arxiv.org/abs/2310.01728


Time-series Multimodal Models
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- But some current time series LLMs have questionable performance. Replacing LLM with a simple 
attention layer doesn’t significantly degrade performance (sometimes even better).

* Lower is better

[Are Language Models Actually Useful for Time Series Forecasting? https://arxiv.org/abs/2406.16964]

https://arxiv.org/abs/2406.16964


Today’s lecture

Multimodal foundation models and pre-training1

2 Adapting LLMs into multimodal LLMs

3 From text to multimodal generation

4 Latest directions: natively multimodal, multimodal MoE, 
real-world modalities
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Assignments for This Coming Week

For project:
• Make sure to meet with myself and TAs this week

• Medium progress towards implementing new ideas. Either promising results or poor results, 
but a good idea of what is wrong and how to fix.

Reading assignment due tomorrow Wednesday (4/16).

This Thursday (4/17): fifth reading discussion on large language models.

1. Alignment faking in LLMs

2. Reasoning in LLMs

45
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